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Note 

A Method for Generation of Orthogonal and 
Nearly Orthogonal Boundary-Fitted Coordinate Systems 

1. INTR~DLJCTI~N 

Conformal mappings which are analytic functions of a complex variable have 
found extensive application to problems in physics. However, these mappings are 
restricted to two dimensions and have other limitations which sometimes seriously 
diminish their usefulness. 

In recent years more general transformations have come into use under the names 
of “boundary-fitted” or “surface-oriented” coordinate systems [ 1, 21. These coor- 
dinate systems are computed as approximate numerical solutions to elliptic 
generating equations. Usually the coordinate distribution on the boundaries of the 
physical region can be specified arbitrarily. The standard conformal system is 
obtained only when the Laplace equation is used with a particular boundary coor- 
dinate distribution. Thus boundary-fitted coordinates encompass a much larger set of 
systems (including three-dimensional ones) than the subset of conformal mappings. 
However, these boundary-fitted systems are not, in general, orthogonal. This 
nonorthogonality can have a deleterious effect on accuracy, stability and 
computational complexity. 

Some effort has been devoted to finding an intermediate set of coordinate systems 
which retain most of the flexibility of the general boundary-fitted systems but yet are 
orthogonal. Potter and Tuttle [3 1 and Ghia et al. [4] presented a method for 
orthogonalizing a nonorthogonal boundary-fitted system. Other methods for 
generating orthogonal systems were presented in a note by Mobley and Stewart [5] 
and in work reviewed by Eisemann [6]. However, in all cases the specification of 
coordinate distribution was somehow restricted on at least one boundary. 

The present note discusses a new method for creating orthogonal coordinate 
systems without this restriction on boundary coordinate distribution. It is shown, 
through the presentation of examples of successful application to several geometries, 
that quite simple generating equations can be used for this purpose. A discussion of 
other, less successful, methods is given in a recent report by the authors [7]. 
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2. THE CONSTRUCTION OF ORTHOGONAL SYSTEMS 

Many investigators have used the system of Poisson equations 

Lx + ry, = p, 

II,, + vyy = Qy 
(1) 

to generate numerical transformations from Cartesian coordinates (x, y) to the 
transformed coordinates (<, q) for a variety of geometries. The forcing functions P 
and Q in Eq. (1) provide a means for influencing or controlling the coordinate system 
obtained. 

For ease in the numerical solution of Eq. (1) all the calculations are done in the 
transformed plane on a uniform square mesh. Interchanging the dependent and 
independent variables gives 

axt~ - 2b,, + I’& + J2(Pxt + Qx,) = 0, 

ay,, - WYss + YY,, + JVY[ + QY,) = 0, 
(2) 

where 

a=xfi+ y;, P = XIX, + YrY,, 

y=x: + Y:, J=X,Y, -X,Yt* 

The condition for orthogonality, < = constant lines perpendicular to r7 = constant 
lines, is /3 = 0, since 

which is equivalent to 

P = 0 => -gY[ = -Y&, > 

1lYx Irl=constant = -Yx Il=constant. 

That is, the slopes of the two sets of coordinate lines are negative reciprocals of each 
other. 

One method for attacking the problem at hand is to attempt to compute forcing 
functions P and Q which assure an orthogonal mesh for a given geometry and 
boundary coordinate distribution. The authors tried several methods for doing this by 
using Eq. (2) directly. These attempts, which met with limited success, are recorded 
elsewhere [7]. A different approach to this orthogonal grid problem is to bypass the 
Poisson equations altogether and to choose a generating system based entirely onP. 
Once the grid points have been suitably positioned in the physical region, the forcing 
functions for the Poisson system that would generate this configuration could be 
found from Eq. (2). 

Even though p = 0 is the condition for orthogonality, this equation alone is not 
sufficient for obtaining the required transformation. Two equations are needed, since 
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we must find both the x and Y coordinates of the transformed points. As a new 
generating system, consider 

p,=p,=o. (3) 

The solution /I = constant to Eq. (3) exists only if it is consistent with the boundary 
data. Only at the corners of the computational region is /I specified in advance. Thus 
we can hope for a solution if /I is the same at all corners and for an orthogonal 
solution only when p = 0 at the corners. 

Expanding Eq. (3) gives 

XIXlr, + +x, + Yr Ysl, + Yss Y, = 0, (44 

xtx,, + XIqX, + Y,Y,, + Y,,Y, = 0. (4b) 

To compute the transformation, Eqs. (4a) and (4b) are combined as follows: The 
product of Eq. (4a) and x, is added to the product of Eq. (4b) and xl, yielding 

x:x,, + x:x,, + 2x&& + x, Y, Y,, + XsYr Y,, 

+ (xa Y, + XI Y,> Y,, = 0; Pa) 

the product of Eq. (4a) and y, is added to the product of Eq. (4b) and y,, yielding 

Y5, Y,, + Y: Y,, + 2Y, Y,Y,, + x, Yrpst + XIYIX,, 

+ (x, Y, + XI Y,) X{tj = 0. (5b) 

The reason for replacing Eqs. (4) with Eqs. (5) is to obtain a non-zero coefficient for 
xij and y, in the finite-difference forms of Eqs. (5a) and (5b). This eliminates the 
possibility of dividing by zero in the iteration process. Each derivative in Eqs. (5a) 
and (5b) is replaced by the appropriate central difference formula and the system is 
solved iteratively using successive overrelaxation. 

3. EXAMPLES 

To illustrate the use of this method, we present coordinate systems generated by 
Eq. (3) for eight different geometries and boundary distributions. In each case the 
grid shown was obtained by solving the finite difference form of Eq. (5) using 
successive overrelaxation (SOR). The initial guess for this iterative procedure in all 
cases was the nonorthogonal grid generated by Eq. (1) with P = Q = 0 (a Laplace 
system). As the first example, Fig. 1 shows a grid generated for a simple rectangular 
region with nonuniform spacing in both the vertical and horizontal directions. The 
second of these examples, shown in Fig. 2, is a simply connected region with one 
convex boundary. Next we have a similar region with a concave rather than convex 
curved boundary as seen in Fig. 3. Note that the orthogonal mesh must have rather 
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FIG. 1. Orthogonal coordinate system generated for rectangular region by Pr =/3, = 0. 

FIG. 2. Coordinate system for region with convex boundary. 

FIG. 3. Coordinate system for region with concave boundary. 
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FIG. 4. Comparison of orthogonal grids for region with concave boundary. - 1681 points, --- 
656 1 points. 

fine spacing near the concave upper boundary to accomodate the curvature. During 
an initial review of this note a question was raised concerning the possibility of a 
singularity on the upper boundary in the vicinity of the fine mesh spacing. This is a 
valid question, one that needs to be considered each time the boundary-fitted coor- 
dinate technique is used since almost any generating system can produce unaccep- 
table meshes for particular regions. To verify that the fine mesh spacing in Fig. 3 
does not indicate a singularity in the transformation, we have refined the mesh. 
Figure 4 compares two different grids, one coarse with 168 1 points and the other fine 
with 6561 points, generated for the concave region. The fact that corresponding grid 
lines are in about the same position in both meshes confirms that the coarse 

FIG. 5. Grid lines generated for concave region by pr = j3, = 0. 

581/43/2-I3 
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FIG. 6. Orthogonal coordinate system for annular region (horizontal symmetry line). 

discretization yields a good approximate solution to the exact problem. A further 
confirmation comes from consideration of the Jacobian at the midpoint of the upper 
boundary. The value of .I = 0.00186 computed on the coarse mesh is seen to agree 
very well with J= 0.00047 on the fine mesh when it is taken into account that these 
quantities should differ by a factor of four because of the discretization details. There 
is no indication of a zero Jacobian in the region. 

Next we attempted to generate an orthogonal mesh on a region similar to the 
previous one but with greater curvature of the concave boundary as seen in Fig. 5. Of 
course an unacceptable mesh such as this one with crossing lines indicates a singular 
transformation which can often lead to numerical difficulties. But problems like this 
can also arise from iterative schemes based on the Poisson system if the forcing 
functions are not chosen carefully. To verify this we computed directly forcing 
functions P and Q using Eq. (2) with x and y given as in Fig. 5. We then solved 
Eq. (2) iteratively for x and y using this P and Q, thus regenerating the grid of Fig. 5. 

FIG. 7. Orthogonal coordinate system for annular region (vertical symmetry line). 
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FIG. 8. Coordinate system with unequal spacing on one boundary (441 points). 

As the next example, consider a doubly connected region bounded by concentric 
circles as shown in Figs. 6 and 7. Since this region is symmetric to a line through the 
center, each grid was generated for half the region and reflected in the line of 
symmetry. The symmetry line was treated as a boundary with fixed coordinate 
distribution, thus assuring that /I = 0 at the corners of the computational region. The 
spacing on the outer boundary, but not on the inner boundary, was uniform. In 
Fig. 6, the line of symmetry was taken as a horizontal line through the center of the 
figure while the line of symmetry for Fig. 7 was a vertical line through the center. 
Interestingly, the two orthogonal grids thus generated (Figs. 6 and 7) are quite 
dissimilar as a result of different points being held constant after the same initial 
guess. 

FIG. 9. Coordinate system with unequal spacing on one boundary (1681 points). 
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For a linal test of the method, we consider a square region with the coordinates 
distributed uniformly on three boundaries, nonuniformly on the fourth. Figure 8 
shows a grid of 441 points with /I z 0.0002 throughout the field except near the boun- 
daries. In an attempt to improve the orthogonality, the number of grid points was 
increased to 168 I as seen in Fig. 9. This refinement of the grid did not improve the 
orthogonality. Thus we believe that no orthogonal mesh exists for this configuration 
and that the existence of a numerical solution with a small nonzero /I results from the 
weak connection between the interior grid points and the corner points, the only 
points where /3 = 0 is enforced. 

4. CONCLUSION 

A new method, based on. Eq. (3), which allows arbitrary boundary coordinate 
distribution, has been used to generate orthogonal and nearly orthogonal systems for 
several test problems. While the method has limitations and although basic questions 
remain concerning the existence and uniqueness of orthogonal coordinate systems, 
this new method adds to the available, useful techniques for constructing these 
systems. Even a system which is not exactly orthogonal but only nearly orthogonal 
can be useful in reducing the truncation error which arises in most numerical 
schemes. Of course, it must be realized that a particular orthogonal coordinate 
system is not necessarily better than any given nonorthogonal system. In general, it 
seems beneficial to strive for orthogonality whenever it does not lead to a serious loss 
of other desirable coordinate system properties. 
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